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Hard and Soft-Core Equations of 
State for Simple Fluids 
IV. Elementary Theory of Termination Temperaturest 

JOHN STEPHENSON 

Theoretical Physics Institute. University of Alberta, Edmonton, Alberta. Canada. T6G 21 1 

(Received Seplenlher 12. 1978) 

An elementary theory of termination temperatures of characteristic curves is developed with the 
aid of two simple mathematical models. The first model contains two important constant ratios 
involving all six termination temperatures. The second model interpolates between the first 
model and the hard-core limit with the aid of a parametric softening temperature. T .  The proper- 
ties of the  temperature ratios and the underlying models are discussed in detail, especially in the 
hard-core limit. 

1 INTRODUCTION 

In the preceding papers of this series’ we introduced a set of ten characteristic 
curves which may be calculated from the equation of state for a simple fluid. 
Associated with these curves are six termination temperatures, denoted in 
ascending order T’, T,, TF, TA, TD and TE, which may be calculated from the 
second virial coefficient B. In order to develop an elementary theory of 
termination temperatures, and hence to gain some insight into the relation- 
ships between them, we shall in this paper construct two simple mathematical 
model expressions for the second virial coefficient. Our results and conclu- 
sions are summarized in the final section. 

In order to justify the construction of artificial models, we observe that the 
classical expression for the second virial coefficient in which the interaction 
between molecules is described in terms of a two-particle scalar potential 
4(r) is already itself a much idealized model.’ At low temperatures cluster 

t Work supported in part by the National Research Council of Canada, Grant No. A6595. 
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24 J .  STEPHENSON 

and molecule formation and other quantum effects require additional cor- 
rection terms. At high temperatures a simple potential form does not 
adequately account for the complex high energy collision process, which 
again is a quantum scattering problem involving the full electron structure 
of the monatomic atoms comprising a simple fluid. For molecules the situa- 
tion is even more complicated with the excitation of rotational and vibra- 
tional states, and the onset of dissociation at high temperatures. Eventually 
at very high temperatures the gas becomes ionized. We have made these 
rather obvious remarks in order to support our assertion that an analysis 
which is restricted to a classical virial coefficient potential model cannot be 
expected to be completely adequate, and hence we feel justified in the use of 
mathematical models to provide a geometrically satisfactory description of 
the second and third virial coefficients. 

2 M-N MODEL: DESCRIPTION 

About the simplest model we can construct. to describe the second virial 
coefficient is the two-term expression 

where a' and b' are positive constants, and the exponents M and N satisfy 

M > N > O ,  (2) 

so that B is large and negative at low temperatures, and small and positive at 
high temperatures, with a Boyle point T, where B vanishes, and an Amagat 
point TA where B has a maximum. 

The high temperature behaviour chosen for B coincides with that derived 
by Rowlinson for systems with steep intermolecular  potential^.^ For any 
intermolecular potential containing a repulsive part of the inverse power 
form (air)", with n > 3, where CT is an effective molecular diameter, one may 
show that at high temperatures 

B - c/T3'", (3) 

where c is a constant depending on n. Hence the virial coefficient exponent N 
and the repulsive potential exponent n are related by 

N = 3/n. (4) 

So if, for example, one is dealing with the popular Lennard-Jones 6,12 
potential, one has N = i. More generally for a Lennard-Jones m,n potential, 
with attractive exponent m 3 we have n > m > 3 so N < 3/m. For a 
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EQUATIONS OF STATE FOR FLUIDS IV 25 

Lennard-Jones 6,n potential we must have n > 6, or N < i. In any event 
n > 3 implies N < 1. In the limiting case n + co, N + 0, one approaches a 
hard-core limit in which the repulsive part of the potential becomes an 
infinite barrier at r = 0. We shall keep N arbitrary in the range 0 < N < 1. 

The choice of the exponent M which determines the low temperature 
behaviour is more complicated. The asymptotic low temperature form of the 
second virial coefficient calculated from the classical integral expression with 
a Lennard-Jones type m,n potential, is not of a simple inverse power form: 
V. For an equation of state with a van der Waals’ type of attractive term 
Ra’p’ in the pressure, one would have a second virial coefficient like 

( 5 )  

with N = 0 in this hard-core case and M = 1. The choice M = 2 corresponds 
to the second virial coefficient of Berthelot’s equation, which has been useful 
in physical ~hemistry.~ 

As we now show, we must choose M > 1 if we are to avoid the existence of a 
seventh termination temperature TG, say, associated with the intersection of a 
locus of maxima or minima of the constant volume specific heat C, with the 
temperature axis at zero density. For a simple fluid with no internal struc- 
ture, the entire contribution to the specific heat at zero density comes from 
translational motion, and C,  is a constant tR independent of temperature. 
Moreover, C, cannot be less than this value. The geometrical consequence 
is that no single locus of C, extrema can intersect the temperature axis. (A 
pair of loci of maxima and minima could, but we consider such a possibility 
unlikely.) Therefore the density derivative of C, on the temperature axis must 
be positive: 

B = b’ - a’/T, 

Now from the virial expansion 

PV , z = - =  1 + B p + C p Z + . . . ,  
. RT 

one immediately obtains at low density r+)T - -RT(28 + TB). 

Thus we generally require the strict inequality 

(7) 

28 + TB < 0, 
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26 J.  STEPHENSON 

a condition that is automatically satisfied by the classical integral expression 
for the second virial coefficient: VI. The theoretically non-existent termina- 
tion temperature TG associated with the C, locus would be located by 

(10) 
To ensure that (9) holds in our model (1) we must have M > 1 (see below). 
This criterion is useful in checking the validity, or otherwise, of various 
second virial coefficient expressions whether fitted to experimental data6*' 
or appearing in theoretical work.8 Equation (10) is satisfied identically at all 
temperatures by the hard-core equation of state second virial coefficient (5). 
C ,  is then a constant, $R, at all temperatures. 

Also, in order to get the termination temperatures in the correct sequence, 
with TF lying between T, and TA, we need M < 1/N (see below). We note 
here (in advance) the necessity of a special extra condition to ensure TF < TA 
also occurs when the second virial coefficient is derived from a potential via 
the classical formula,' VI. 

28 + TB = 0. 

So our first model assumes the form (1) with 

O <  N <  1 s . M  < 1/N. (1 1) 

The model with M = 1 and N = 3/n can also be derived as a specid limiting 
case of the second virial coefficient for a Lennard-Jones general m,n poten- 
tial as rn + 3, and the attractive portion becomes very weak,' V. 

3 M-N MODEL: TERMINATION TEMPERATURES 

Given the model expression ( I ) ,  it is trivial to calculate the termination 
temperatures.,From the defining expressions' 

T,: B = 0, (1 2 4  

T,: B = TB, (1 2b) 

TF: B - T B  + T2B = 0, ( 12c) 

TA: B = 0, (124 

T,: B = 0, (1 2e) 

T-: B + T B = O ,  (12f) 

7'': 2 8  + TB = 0, ( 1%) 
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EQUATIONS OF STATE FOR FLUIDS IV 

one quickly obtains for the (M - N)th power of each temperature 

7 ' L M - N )  = F)r + ') 
b N + 1  

~p - N )  = f) (-) M + l  
b N + l  

b' g T L M - N )  = (!!) (") 
ThM-N) = (-) a' M ( M  + 1) 

b' N ( N  + 1) 

~ k 4 f - N )  = (!!)(M)' 
b' 

7'LM-N) = f) M(l - M )  
b' N(l - N) 

To ensure the nonexistence of T,, we note that we must choose M 2 1, so 
that the expression 

is negative over the entire temperature range 0 c T < 03. It is easy to verify 
that if M > N, then TB < Tc c TA c TD c TE and Tc < TF < To. To ensure 
that 7'' < 7" we must also require M < 1/N, as may be seen from comparison 
of (1 3c) with (1 3d). 

There are three parameters: the ratio (a'/b'), and the exponents M and N. 
Therefore it is possible to select three independent temperatures, say TB, 
Tc and TA, and express the remaining termination temperatures in terms of 
these (disregarding TG): 

TF = TS/TB, (154 

TD = TA TcITB, ( 15b) 

TE = T2/TB. ( 1 5c) 

Tc is the geometric mean of TB and TF, and TA is the geometric mean of TB 
and T,. In order to establish a scale, and at the same time remove the ratio 
of unknown constants (a'/b), it is appropriate to  divide through by the Boyle 
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28 J. STEPHENSON 

TABLE I 

Ratios of termination temperatures lor the M - N model with M = 1 

N n = 3/N TJTB = i. TFITB TAITB = JI TD/TB 

1 3 1.649 2.718 2.718 4.482 
314 4 1.706 2.910 3.160 5.392 
315 5 1.747 3.052 3.586 6.265 
112 6 1.778 3.160 4.000 7.111 
113 9 1.837 3.375 5.196 9.546 
114 12 1.871 3.502 6.350 11.882 
115 15 1.894 3.586 7.477 14.159 
116 18 1.909 3.646 8.586 16.394 
117 21 1.921 3.691 9.682 18.599 
118 24 1.930 3.725 10.167 20.782 
119 27 1.937 3.753 11.845 22.946 

1/10 30 1.943 3.775 12.915 25.096 
1/11 33 1.948 3.794 13.981 27.233 
1/12 36 1.952 3.810 15.041 29.360 

0 a3 2.000 4.000 03 a2 

- - - - - - 

TE/TB 'AITC = dl 

7.389 1.649 
9.989 1.853 

12.860 2.053 
16.000 2.250 
27.000 2.828 
40.317 3.393 
55.902 3.948 
73.716 4.491 
93.134 5.040 

I 15.933 5.579 
140.296 6.114 
166.810 6.647 
195.463 7.177 
226.244 7.706 
- - 

a3 to 

temperature TB, or alternatively set (a'lb') = 1 in (13). Then one finds that 
there are just two independent constant ratios, involving only M and N :  

The ratio of these ratios is then 

For fixed M > 1 these ratios steadily increase as N varies from 1 down to the 
hard-core limiting value 0. These ratios will be of great importance in our 
analysis of second virial coefficients in general. Table I lists these ratios for 
M = I and selected values of N in the range 0 < N < 1, and the correspond- 
ing graphs are presented in Figure 1. 

Certain special limiting cases are of interest. As n -+ co, N + 0 we approach 
the hard-core limit. The temperatures TB, T, and TF remain finite, wherea: 
TA, TD and TE diverge to + co. The ratio pthen diverges too, but the ratio i 
remainsfinite, with the limiting value 

A M . O  = (M + 1)"*, (18: 
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EQUATIONS OF STATE FOR FLUIDS I V  29 

10‘ 1 I I 1 I I 

I I I I I I 

0.5 N = 3/n 0 I 

FIGURE 1 
exponent N = 3/n for the M - N model with M = 1 .  

Ratios of termination temperatures plotted on a logarithmic scale versus the 

which lies between 1 and 2 since 1 < M < m (1/N = m now). It is important 
to note that although TA and TD separately become infinite, their ratio A 
remains finite. 

In the most useful case M = 1, we have 

which increase steadily as N varies from 1 to 0. In the hard-core limit N = 0, 
(see also (18) with M = l),  

A 1 , O  = 2, PI.0 = 00, (20) 

which is just the same result as we obtained for the hard-core equation of 
state second virial coefficient considered in 111.’ At the other extreme 
N + 1 ( = M ) ,  and 

Al .  = el’’ = 1.649.. . , pl, = e = 2.718. .  . . (21) 

In general from (16), because of our restrictions on M and N, the largest 
possible value of 1 is 2. So it is gratifying to realize that the corresponding 
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30 J.  STEPHENSON 

ratios for argon are approximately equal and less than 2. Quoting from 11, for 
argon, 

T- TF 
TB TC 
- z 1.921, - z 1.937, 

with geometric mean - 1.93. The corresponding ranges of exponents from 
Table I, where M = 1, are 1/9 < N < 1/7, or 27 > n > 21. If we try M = 2, 
say, then even in the hard-core limit, when N = 0, the ratio A2,0 = 3lI2 is 
too low. 

4 T, - N MODEL 

Our second virial coefficient model of the preceding two sections has 
enabled us to examine termination temperature ratios over a range 01 
repulsive exponents n = 3/N from the hard-core limit n = co, N = 0 
through to the other limiting case N = 1. (N < 3/m for a Lennard-Jones 
m-n potential with m > 3). One important feature of the M - N model i$ 
that it exposed the existence of two independent ratios involving the si2 
termination temperatures. We cannot expect this special feature to carry ovei 
to more realistic expressions for the second virial coefficient. Moreover, thc 
hard-core is only a special limiting case. Therefore it is desirable to construc 
a model which will interpolate between the M - N model and the hard-con 
limit, while retaining the exponent N. 

In our second model there is an extra parameter, a characteristic tempera 
ture T,, which we may call the softening temperature. We set 

B = b - (a/RT) (23a 

(23b 

The hard-core (4 x ) molecular volume parameter b is thus softened by ; 

factor, which decreases in value at high temperatures, and represents th  
partial penetration of atoms on collision. b, denotes the hard-core value oft 
which is effective at low temperatures. At high temperatures 

= b,/[1 + ( T / Q N ]  - (u/RT). 

and has the desired power law decay, with N related to the repulsive potentk 
exponent n as before. The negative term is again based on a van der Waal: 
type attractive ap2 contribution to the pressure. One quickly verifies thz 
2 8  + T h  is negative at all temperatures, provided 0 -= N < 1, so T, does nc 
exist, and the undesired C, locus termination point is avoided. 
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EQUATIONS OF STATE FOR FLUIDS IV 31 

If T,  is very large, in the limit T,  + 03 we regain a hard-core model, for any 
fixed value of N .  On the other hand, if T,  is very small, in the limit T,  -+ 0 we 
approach the M - N model with M = 1, and 

B - b o ( K m N  - (a/RT), (25) 
provided one rescales by some method, such as 

i) by letting bo -+ 03 as T,  
ii) by calculating only ratios of termination temperatures with respect to 

the Boyle point, for example, or 
iii) by scaling with respect to a critical temperature (actually equivalent 

to (ii)). 

We shall 1,oosely call the limiting case T,  + 0 the soft-core limit, and the 
limiting case T,  -+ 03 the hard-core limit, even though a free exponent N still 
remains. 

0 so bo TF -+ b', a constant, or 

It is convenient to work with the reduced temperature variable 

t = b, RT/a, (26) 

(27) 

so the dimensionless second virial coefficient is 

B* = B/b, = 1/[1 + (t/t,)N] - l/t. 

Now the six termination temperatures defined as in (12a)-( 12f) are given 
implicitly by the following expressions: 

Tg: r B  = 1 + (ta/t,)N, 

Tc: tc = 2[1 + ( t~ / t , )~I~/ [1  + (1  + N ) ( t c / t J N ] ,  

(284 

(28b) 

+ (1 + N)Z(fF/ts)2N1, (28c) 
(28d) 

(28f) 
For a chosen value of N ,  one may vary t ,  from 0 to 03, and study the solu- 

tion temperatures and their ratios. Logarithmic graphs of termination 
temperatures vs. t, are presented in Figures 2 and 3 for the cases N = and 
b. The corresponding temperature ratios are readily obtained, and are listed 
in Tables I1 and 111. As expected tg ,  tc and t ,  remain finite at the hard-core 
t ,  -+ co limit, where they approach the values 1, 2 and 4 respectively, inde- 
pendent of N .  The ratios tc/ts and t F / t g  are not now equal, but differ slightly 
over the entire range 0 < t ,  < co, while remaining finite. Also as expected 

TF: f F  = 4[1 + (t~/t,)"]'//Cl + (2 + 2N - NZ)(tF/t,)N 

T": tA  = [1 + ( ~ A / ~ , > N ~ 2 / C ~ ( ~ ~ / ~ s ) N l ,  

TE: t ,  = [1 + ( t ~ / t , ) ~ I ~ / { N ' ( t ~ / t s ) ~ C ( f ~ / t s ) ~  - 11). 
TD: t~ = 2[1 + ( t D / t , ) N 1 3 / { N ( t D / t s ) N [ ( 1  - N )  (1 + N ) ( t ~ / t s ) ~ ] } ,  (28e) 
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32 J .  STEPHENSON 

- 

I -  1 I I I 1 i 

16' I t, lo3 
FIGURE 2 
1 ,  on logarithmic scales for the 
values of I ,  are indicated. 

Termination temperatures r = b, RT/a plotted versus the softening temperature 
- N model with N = 4. The asymptotic forms at high and low 

FIGURE 3 Termination temperature for the - N model with N = 1/6, as in Figure 2. 
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EQUATIONS OF STATE FOR FLUIDS IV 33 

TABLE I1 

Ratios of termination temperatures for the 7, - N model with N = 4 for various values 
of I, = b, RTJic 

f s  0 i$ 1 10 100 m 

r c / r e  1.871 I .884 
f F / i I I  3.502 3.549 
t,,/(, 6.350 6.804 
iD/ l ,  11.882 12.843 
t E / t g  40.317 47.264 
t F / f C  1.871 1.884 
t D / i A  1.871 1.887 
t D / r c  6.350 6.818 
t E / t A  6.350 6.946 

1.895 
3.592 
7.284 
13.861 
55.609 
1.896 
1.903 
7.3 15 
7.634 

1.912 
3.657 
8.195 
15.803 
74.930 
1.913 
1.928 
8.267 
9.144 

1.932 
3.737 
9.814 
19.279 
124.811 
1.934 
1.964 
9.978 
12.717 

1.952 
3.816 
12.541 
25.169 
291.400 
1.955 
2.007 
12.891 
23.235 

2 
4 

m 
03 

03 
2 

2.192 
m 
a, 
- 

TABLE I 1 1  

values of I ,  = bo R7Ja 
Ratios of termination temperatures for the T, - N model with N = for various 

t c / r ,  1.909 1.928 1.935 
t F / t B  3.646 3.717 3.745 
1 , / r ,  8.586 10.101 10.904 
t , / i ,  16.394 19.560 21.242 
t E / f B  73.716 I 1  l.Op9 136.947 
tF/ tC 1.909 1.928 1.935 
tD / f ,  1.909 1.936 1.948 
tD/ ic  8.586 10.147 10.979 
tE/t, 8.586 10.994 12.560 

1.943 
3.779 
12.088 
23.729 
185.809 
1.944 
I .963 
12.210 
15.371 

1.953 
3.8 I5 
13.806 
27.343 
289.747 
1.954 
1.980 
14.002 
20.987 

1.962 2 
3.852 4 
16.262 m 
32.517 x) 

564.383 33 
1.963 2 
?.ooO 2.1 18 
16.573 x) 

34.706 a 

t ,  - t , .  (294 

Consequently the ratio 

A N  F TD/TA - [2/( 1 - N)]'"' +') (30) 

remains finite as t ,  + 03. Its value now depends on N, (cf. Eqs. (18)-(20)), 
and is greater than 2.1, lies fairly close to 2 for the values of N most likely to 
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34 J. STEPHENSON 

be useful, say 0 < N < i. Note that the hard core limiting value is 1, = 2 
when N = 0. For small t , ,  when the ratios match those of the 1 - N model, 

t ,  l/f:”’ -N), ( 3 W  
t C  - [2/(1 + N ) - J l ’ ( y r y l - N ) ,  (31b) 

9 (314 

, (314  

(31e) 

(310 

t, [2/(1 + N)]2/(1-” NI(1 -N)  
I t s  

t ,  - ( 1 / ~ )  I/ (  1 - N ) / t r / (  1 - N) 

I ,  - [2/N(1 + N)]l’(l-N)/tr’(’-N) 

t ,  (1 /~ )2 / (  I - N)/t;/( 1 - N) 

The asymptotic forms of the termination temperatures as t ,  -, 0 and t ,  -, GO 

are indicated in Figures 2 and 3. 
If, on the other hand, we fix t ,  and vary N, one can approach the hard-core 

limit by letting N -, 0. Then one obtains, independent oft,: 

1, + 2, fc + 4, t F  4 8, 

I ,  - 4/N, t D  - 8/N, 1, - 8/[N3 h(1/N3)], 

(324 

(32b) 
and again we have a common limiting ratio 

The chief value of the T,  - N model is that it provides the freedom of an 
extra parameter, the softening temperature, T,. If one compares the asymp- 
totic behaviour of this model with that of the scaled second virial coefficient 
for potential models of the Lennard-Jones m,n type, one can actually fix the 
value of T,, but unfortunately the value so obtained depends on the choice of 
the effective molecular diameter: V. The extra parameter is more useful in 
that it will enable us to extend the range of investigation of characteristic 
curves and the locus of extrema of the constant pressure specific heat C,, 
which terminates at T D .  

5 S U M M A R Y  A N D  CONCLUDING REMARKS 

In this paper we have presented an elementary approach to the theory of 
termination temperatures with the aid of two simple mathematical models 
which approximate the geometry of the second virial coefficient reasonably 
closely. The most important feature of the first model is the appearance of 
two independent characteristic ratios, 1 and p, interconnecting the three 
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EQUATIONS O F  STATE FOR FLUIDS IV 

temperatures TB, Tc and TF. which remain finite in the hard-core limit, with 
TA, TD and TE, which diverge to + 00. However, the ratio A = TD/TA remains 
finite, and less than or equal to 2. The exponent N ,  describing the high tem- 
perature tail of the second virial coefficient B, is related to the exponent n of 
the repulsive part of the intermolecular potential by the simple relation N = 
3/n, with n > rn > 3, where m is the exponent of the attractive term in the 
potential. The requirement that no locus of C, extrema terminate on the 
temperature axis leads to a restrictive condition on the derivatives of the 
second virial coefficient, 28  + T B  < 0. The models can be made to satisfy 
this condition, by setting the exponent of the low temperature negative term 
in B equal to unity. The first model is then derivable as a limiting case of the 
Lennard-Jones m,n potential as m -+ 3 for general n. The second model 
interpolates between the first model and the hard-core van der Waals' type 
limit, by means of an additional parameter, T,,  a softening temperature. In 
this way one may account for a range of various possible behaviour of the 
second virial coefficient. The properties of the termination temperatures of 
the more realistic Lennard-Jones m,n potential is the subject of the following 
paper. 
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